Stepwise synthesis of magnetic mesoporous silica nanoparticles decorated with SnO2 quantum dots as an efficient, recyclable, and green nanocatalyst for the synthesis of benzo[a]pyrano[3,2‐c]phenazine derivatives

Author:

Dehnavian Mohaddeseh1ORCID,Moradi Leila1ORCID,Bistgani Azam Moazeni1ORCID

Affiliation:

1. Faculty of Chemistry, Department of Organic Chemistry University of Kashan Kashan Iran P.O. Box 87317‐51167

Abstract

In this research, magnetic mesoporous silica nanoparticles decorated with SnO2 quantum dots (M‐MSNs/SnO2[QDs]) were successfully synthesized and characterized using several advanced techniques including FT‐IR, XRD, FE‐SEM, EDS, elemental mapping, VSM, and BET. This study demonstrates the synthesis of benzo[a]pyrano[3,2‐c]phenazine derivatives via a four‐component reaction between 2‐hydroxy‐1,4‐naphthoquinone, ortho‐phenylenediamine, malononitrile, and benzaldehyde derivatives in the presence of M‐MSNs/SnO2(QDs) in ethanol as a green solvent. The proposed catalyst efficiently catalyzed the synthesis of these compounds with yields of 87–96% in 70–100 minutes. The presented method offers a cost‐effective and environmentally friendly approach with numerous advantages, including high product yields, simple operation, short reaction times, low‐cost purification, and facile catalyst recovery.

Funder

University of Kashan

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3