Synthesis and molecular docking simulation of new benzimidazole–thiazole hybrids as cholinesterase inhibitors

Author:

Dawood Dina H.1ORCID,Srour Aladdin M.2ORCID,Omar Mohamed A.1,Farghaly Thoraya A.3ORCID,El‐Shiekh Riham A.4

Affiliation:

1. Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute National Research Centre Giza Egypt

2. Department of Therapeutic Chemistry National Research Centre Giza Egypt

3. Department of Chemistry, Faculty of Science Cairo University Giza Egypt

4. Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt

Abstract

AbstractDementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole–thiazole hybrids (3–10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver–Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase‐immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX‐2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2O2‐induced damage in SH‐SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX‐2 inhibition effects with IC50 ranging from 0.050 to 0.080 μM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole–thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from −8.65 to −6.64 kcal/mol (for AChE) and −8.71 to −7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole–thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.

Publisher

Wiley

Subject

Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3