Pediatric prognostic models predicting inhospital child mortality in resource‐limited settings: An external validation study

Author:

Ogero Morris12ORCID,Ndiritu John1,Sarguta Rachel1,Tuti Timothy3,Akech Samuel34

Affiliation:

1. Department of Mathematics University of Nairobi Nairobi Kenya

2. Department of Infectious Disease Epidemiology London School of Hygiene & Tropical Medicine London United Kingdom

3. Kenya Medical Research Institute (KEMRI)‐Wellcome Trust Research Programme Nairobi Kenya

4. School of Medicine University of Nairobi Nairobi Kenya

Abstract

AbstractBackground and AimsPrognostic models provide evidence‐based predictions and estimates of future outcomes, facilitating decision‐making, patient care, and research. A few of these models have been externally validated, leading to uncertain reliability and generalizability. This study aims to externally validate four models to assess their transferability and usefulness in clinical practice. The models include the respiratory index of severity in children (RISC)‐Malawi model and three other models by Lowlavaar et al.MethodsThe study used data from the Clinical Information Network (CIN) to validate the four models where the primary outcome was in‐hospital mortality. 163,329 patients met eligibility criteria. Missing data were imputed, and the logistic function was used to compute predicted risk of in‐hospital mortality. Models' discriminatory ability and calibration were determined using area under the curve (AUC), calibration slope, and intercept.ResultsThe RISC‐Malawi model had 50,669 pneumonia patients who met the eligibility criteria, of which the case‐fatality ratio was 4406 (8.7%). Its AUC was 0.77 (95% CI: 0.77−0.78), whereas the calibration slope was 1.04 (95% CI: 1.00 −1.06), and calibration intercept was 0.81 (95% CI: 0.77−0.84). Regarding the external validation of Lowlavaar et al. models, 10,782 eligible patients  were included, with an in‐hospital mortality rate of 5.3%. The primary model's AUC was 0.75 (95% CI: 0.72−0.77), the calibration slope was 0.78 (95% CI: 0.71−0.84), and the calibration intercept was 0.37 (95% CI: 0.28−0.46). All models markedly underestimated the risk of mortality.ConclusionAll externally validated models exhibited either underestimation or overestimation of the risk as judged from calibration statistics. Hence, applying these models with confidence in settings other than their original development context may not be advisable. Our findings strongly suggest the need for recalibrating these model to enhance their generalizability.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3