Affiliation:
1. School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
Abstract
AbstractIn light of the escalating accumulation of polymer waste in daily life, chemical recycling of polymers and value‐added utilization of products have gained considerable attention in recent years. Researchers have widely explored the potential of bis(2‐hydroxyethyl) terephthalate (BHET) derived from the glycolysis recycling of poly(ethylene terephthalate) (PET) waste in the synthesis of polymers or concrete. In this study, we synthesized BHET through glycolysis recycling of PET, and combined it with microencapsulated ammonium polyphosphate (SiO2@APP) and carboxymethyl chitosan to design a series of intumescent flame‐retardant waterborne polyurethane (IFRWPU). The synergistic effect of BHET and SiO2@APP was demonstrated, and the resulting IFRWPU with 12.5 wt% IFR and 3 wt% BHET achieved a limit oxygen index of 25.8% and a 73% reduction in the peak heat release rate in flame retardancy tests. Furthermore, the interaction of BHET and flame retardant was discussed using the analysis of char residue and pyrolytic gas. Overall, this work provides a novel strategy to construct superior flame‐retarded waterborne polyurethane with admirable bonding performance.Highlights
The application of glycolysis product of PET in the flame‐retardant modification of WPU.
The synergistic enhancement of flame retardancy between BHET and IFR was confirmed.
The intumescent flame‐retardant was composed of SiO2@APP and CMCS.
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献