Affiliation:
1. The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
Abstract
AbstractEnhancing the mass transfer performance just by modifying the channel structure without external energy input is one of the most important topics for microchemical technology development. This work reports the high‐performance gas–liquid mass transfer in a novel step T‐junction microchannel. The liquid‐side mass transfer coefficient in the step T‐junction has been significantly improved by one order of magnitude when compared with the conventional T‐junction, which is higher up to 60 × 10−4 m/s. To our knowledge, it might be the highest value obtained in the microchannel without external energy input. The parameters of bubble generation frequency and gas–liquid interface movement velocity in different microdevices are explored to reveal the mechanism behind the ultra‐high mass transfer coefficient in the step T‐junction. Finally, two models considering the gas absorption are developed for the bubble generation frequency and volume, and two models are proposed for the gas–liquid mass transfer coefficient.
Funder
National Natural Science Foundation of China
Subject
General Chemical Engineering,Environmental Engineering,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献