Unclonable fluorescence of MgO‐ZrO2:Tb3+ nanocomposite for versatile applications in data security, dermatoglyphics

Author:

Swathi B. N.1,Krushna B. R. Radha1,Daruka Prasad B.2,Sharma S. C.3,Subramanian Balanehru4,Nagabhushana H.1ORCID

Affiliation:

1. Prof. C.N.R. Rao Centre for Advanced Materials Tumkur University Tumkur India

2. Department of Physics BMS Institute of Technology and Management, VTU‐Belagavi Affiliated Bengaluru India

3. Honarory Professor Jain Deemed to be University Bengaluru India

4. School of Biological Sciences Sri Balaji Vidyapeeth (Deemed to be University) Puducherry India

Abstract

AbstractLatent fingerprints (LFPs) are one among the most important types of evidences at crime scenes because of the distinctiveness and tenacity of the friction ridges in fingerprints (FPs). Therefore, it is essential in forensic science to develop a reliable method to detect LFPs. Traditional detection methods still face a number of difficulties, such as limited sensitivity, low contrast, strong background, and complex processing stages. In this study, MgO‐ZrO2:Tb3+ (1–5 mol%) (MZ:Tb) nanocomposites (NCs) were prepared via a simple solution combustion (SC) method at low temperature. The photoluminescence (PL) investigation demonstrates that when excited at 379 nm, the produced NCs emits distinctive emission peaks of terbium ions (Tb3+). According to the photometric results, the NCs can be employed as warm light NCs and emit light in the green portion of the colour spectrum. The estimated optical band gap from diffuse reflectance spectra is found to be in the range 4.84–4.97 eV. Regardless of the type of surface being used, the optimized MgO‐ZrO2:Tb3+ (4 mol%) (MZ:4Tb) NCs has a strong ability to minimize background fluorescence interference. With high contrast LFP and I–V type of cheiloscopy, these NCs present a flexible fluorescent mark for the identification of levels 1–3 details in forensic investigation.

Publisher

Wiley

Subject

Chemistry (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3