A data‐driven predictive model for disinfectant residual in drinking water storage tanks

Author:

Kyritsakas Grigorios12ORCID,Boxall Joby1ORCID,Speight Vanessa1ORCID

Affiliation:

1. Sheffield Water Centre University of Sheffield Sheffield UK

2. Department of Sanitary Engineering, Faculty of Civil Engineering and Geosciences Delft University of Technology Delft The Netherlands

Abstract

AbstractA data‐driven approach is developed and proven for ranking the risk of low disinfection residual in water distribution storage tanks, 1 month ahead. The forecasting methodology uses water quality data collected from drinking water treatment plants, storage tank outlets, and rainfall data as inputs. This methodology was developed and tested with data from a water utility serving more than 5 million people. Results show high‐risk category prediction accuracy of 75%–80%. Using a final year of unseen validation data, more than 90% of the storage tanks ranked in the top 20 by the forecasting methodology experienced low disinfectant residual in the following month. Storage tanks are critical water distribution system infrastructure that are currently managed reactively. The adoption of such readily transferable machine learning approaches enables direct proactive management strategies and efficient interventions that can help ensure drinking water quality.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3