Assessing the functional roles of coevolving PHD finger residues

Author:

Basu Shraddha1,Subedi Ujwal1,Tonelli Marco2,Afshinpour Maral1,Tiwari Nitija3,Fuentes Ernesto J.3,Chakravarty Suvobrata1ORCID

Affiliation:

1. Department of Chemistry & Biochemistry South Dakota State University Brookings South Dakota USA

2. National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin‐Madison Madison Wisconsin USA

3. Department of Biochemistry & Molecular Biology University of Iowa Iowa City Iowa USA

Abstract

AbstractAlthough in silico folding based on coevolving residue constraints in the deep‐learning era has transformed protein structure prediction, the contributions of coevolving residues to protein folding, stability, and other functions in physical contexts remain to be clarified and experimentally validated. Herein, the PHD finger module, a well‐known histone reader with distinct subtypes containing subtype‐specific coevolving residues, was used as a model to experimentally assess the contributions of coevolving residues and to clarify their specific roles. The results of the assessment, including proteolysis and thermal unfolding of wildtype and mutant proteins, suggested that coevolving residues have varying contributions, despite their large in silico constraints. Residue positions with large constraints were found to contribute to stability in one subtype but not others. Computational sequence design and generative model‐based energy estimates of individual structures were also implemented to complement the experimental assessment. Sequence design and energy estimates distinguish coevolving residues that contribute to folding from those that do not. The results of proteolytic analysis of mutations at positions contributing to folding were consistent with those suggested by sequence design and energy estimation. Thus, we report a comprehensive assessment of the contributions of coevolving residues, as well as a strategy based on a combination of approaches that should enable detailed understanding of the residue contributions in other large protein families.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3