CO2‐Enhanced Production and Synthesis of 2,5‐ Furandicarboxylic Acid under CO2 Flow through Henkel Reaction

Author:

Chang Po‐Hsun1,Wong David Shan‐Hill1,Ou John Di‐Yi1,Pan Yung‐Tin1ORCID,Jang Shi‐Shang1ORCID

Affiliation:

1. Department of Chemical Engineering National Tsing Hua University Hsinchu 30013 Taiwan

Abstract

AbstractThe present study investigated the preparation of 2,5‐furandicarboxylic acid (FDCA) via the Henkel reaction between furoic acid alkali metal salts and zinc chloride under a continuous CO2 flow at atmospheric pressure. The results obtained were compared with those of previous studies that used high‐pressure conditions or toxic cadmium catalysts. The pathways and rate‐determining steps of the reaction are revealed for the first time. Furthermore, the enhanced formation of FDCA through the promotion of carboxyl exchange and rearrangement during the reaction under a CO2 flow was examined. The CO2‐rich environment afforded a high FDCA yield of 86.30 %, which is the highest yield obtained to date using the Henkel reaction. The findings of this study offer economically improved conditions for large‐scale FDCA production.

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3