Affiliation:
1. Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Piero Gobetti 85 40129 Bologna Italy
2. Center for Chemical Catalysis – C3 Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
Abstract
AbstractFor the first time, a dual photoredox‐ and titanocene‐catalyzed methodology for the regioselective access to α‐vinyl‐β‐hydroxy esters towards aldehyde allylation with 4‐bromobut‐2‐enoate is reported. The protocol is based on the Barbier‐type properties of the inexpensive and available Cp2TiCl2 in catalytic amount (5 mol%). The developed mild reaction conditions gave access to a library of differently functionalized α‐vinyl‐β‐hydroxy esters in moderate diastereoselectivity, employing the commercially available ethyl 4‐bromobut‐2‐enoate and both aromatic and aliphatic aldehydes. The reaction was realized under visible light irradiation, in the presence of an organophotocatalyst (3DPAFIPN, 2 mol%) combined with Hantzsch's ester as the sacrificial reductant. In contrast to other Barbier‐type reactions employing ethyl 4‐bromobut‐2‐enoate, the photoredox system ensures a better regioselectivity. Moreover, the use of preformed organometallic nucleophilic species (e. g., dienolborinates), and the need of metal reductants or stoichiometric amount of transition metals in low oxidation state for Barbier‐type reactions, is avoided. To support the experimental evidence, a detailed photophysical study shed light on the mechanism of the reaction.
Subject
Organic Chemistry,Physical and Theoretical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献