Boron Complexes of Tridentate Acyl Pyridylhydrazones

Author:

Watson Alexander E. R.1,Boyle Paul D.1,Ragogna Paul J.1ORCID,Gilroy Joe B.1ORCID

Affiliation:

1. Department of Chemistry The University of Western Ontario (Western University) 1151 Richmond Street North Ontario N6 A 5B7 London

Abstract

AbstractSince the development of the chemistry and applications of boron dipyrromethene dyes (BODIPYs), numerous other platforms based on boron complexes of N‐donor ligands have emerged as molecular optoelectronic materials. By tailoring the structure of the ligand bound to boron, the optical and electronic properties of a compound can be precisely tuned for unique properties, such as aggregation‐induced emission (AIE) in the case of boron difluoride hydrazones (BODIHYs). We examine the impact of modifying the typical bidentate hydrazone ligand structure used to prepare BODIHYs to enable a tridentate coordination mode to produce boron complexes of tridentate acyl pyridylhydrazones. This change allows for the use of arylboronic acids as sources of boron and facilitates the inclusion of complex organic components at the boron centre, including the formation of dye‐dye conjugates. The synthesized compounds exhibit distinct optical and electronic properties when compared to BODIHYs, such as reversible electrochemical reduction and up to a >300 nm pseudo‐Stokes shift in the solid state, all of which were supported by density functional theory calculations.

Funder

Canada Foundation for Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3