2H‐Azirines: Recent Progress in Synthesis and Applications

Author:

Xu Fen1ORCID,Zeng Fan‐Wang1,Luo Wen‐Jie1,Zhang Shi‐Yu1,Huo Jia‐Qi1,Li Ya‐Peng1

Affiliation:

1. Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China

Abstract

Abstract2H‐arizines are important three‐membered heterocycles in organic chemistry. Recently, many advances in the synthesis and functionalization of 2H‐arizines have been reported. Neber rearrangement, isomerization of isoxazole, oxidation of enamine, C−H bond activation, decomposition of vinyl azide, functionalization of alkyne, and multi‐step synthesis have been developed for the efficient assembly of 2H‐azirines. As versatile and highly strained three‐membered unsaturated heterocycles, 2H‐azirines can be used as distinctive building blocks towards significant functional groups, and have attracted extensive attention for the fabrication of numerous heterocycles. Recent studies have focused on [3+n] ring‐expansion reactions, nucleophilic addition of C=N double bond or continuous nucleophilic addition followed by cyclization, ring‐opening of 2H‐azirines to acyclic compounds, and substitution of sp3‐C−H of 2H‐azirines. One of the most critical challenges is seeking for a selective opening of the specific three bonds of the strained azirine circle, some of what can be achieved on the basis of metal catalyst, photocatalysis, or combination of metal catalyst and photocatalysis. In this review, recent advances involving the synthesis and reactivity of 2H‐arizines accompanied with challenges and breakthroughs are summarized. The review mainly covers the period from 2019 to 2023.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3