Enhancing android application security: A novel approach using DroidXGB for malware detection based on permission analysis

Author:

Kumar Pawan1ORCID,Singh Sukhdip1

Affiliation:

1. Department of Computer Science and Engineering Deenbandu Chhotu Ram University of Science and Technology Murthal Haryana India

Abstract

AbstractThe prevalence of malicious Android applications targeting the platform has introduced significant challenges in the realm of security testing. Traditional solutions have proven insufficient in handling the growing number of malicious apps, resulting in persistent exposure of Android smartphones to evolving forms of malware. This study investigates the potential of extreme gradient boosting (XGB) in identifying complex and high‐dimensional malicious permissions. By leveraging attribute combination and selection techniques, XGBoost demonstrates promising capabilities in this area. However, enhancing the XGBoost model presents a formidable challenge. To overcome this, This research employs adaptive grey wolf optimization (AGWO) for hyper‐parameter tuning. AGWO utilizes continuous values to represent the position and movement of the grey wolf, enabling XGBoost to search for optimal hyper‐parameter values in a continuous space. The proposed approach, DroidXGB, utilizes XGBoost and AGWO to analyze permissions and identify malware Android applications. It aims to address security vulnerabilities and compares its performance with baseline algorithms and state‐of‐the‐art methods using four benchmark datasets. The results showcase DroidXGB's impressive accuracy of 98.39%, outperforming other existing methods and significantly enhancing Android malware detection and security testing capabilities.

Publisher

Wiley

Subject

Modeling and Simulation

Reference37 articles.

1. Stats. SG.Mobile Operating System Market Share Worldwide. Accessed January 30 2023.https://gs.statcounter.com/os‐market‐share/mobile/worldwide

2. Google.Android Apps on Google Play. Accessed January 30 2023.https://play.google.com/store/apps

3. DeepaK RadhamaniG VinodP ShojafarM KumarN ContiM.Identification of Android malware using refined system calls.31(20):e5311. doi:10.1002/cpe.5311

4. BhatP DuttaK.CogramDroid–an approach towards malware detection in Android using opcode ngrams.33(20):e6332. doi:10.1002/cpe.6332

5. Light-Weight, Inter-Procedural and Callback-Aware Resource Leak Detection for Android Apps

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3