Cellular journey of nanomaterials: Theories, trafficking, and kinetics

Author:

Wang Xiangrui12,Wang Wen‐Xiong12ORCID

Affiliation:

1. School of Energy and Environment and State Key Laboratory of Marine Pollution City University of Hong Kong Hong Kong China

2. Research Centre for the Oceans and Human Health City University of Hong Kong Shenzhen Research Institute Shenzhen China

Abstract

AbstractEngineered nanomaterials (NMs) are increasingly fabricated in various fields involving consumer goods, waste management, and biomedical applications such as drug delivery, diagnosis, and treatment of pathological conditions. While these NMs are intentionally or unexpectedly in contact with the human body, there are growing concerns about their intracellular journey, especially considering the therapeutic or deleterious effects after they cross the cell membrane. In this review, the cellular journey of NMs including internalization, intracellular trafficking, and deposition/exocytosis is systematically discussed. This work highlights the accumulation of NMs in cells not only depends on the moment of NMs crossing the cell membrane but also at the following trafficking and exocytosis process. A deeper understanding of the cellular journey of NMs implies that an alternative strategy to fabricate specific targeting NMs is to bypass a few pathways of intracellular trafficking to achieve potent therapeutic effects with minimal toxicity. After comprehensively reviewing the cellular journey of NMs, current progress and application scenarios of kinetic models are discussed. Finally, this review focuses on the bottleneck problems and the corresponding solution technologies for studying the cellular journey of NMs. Recent progresses on the cellular journey of NMs provide new insights into the fabrication of biomedical NMs and facilitate technology development for probing the nano‐cell interaction with high temporal‐spatial resolution.

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3