Overabundant deer and invasive plants drive widespread regeneration debt in eastern United States national parks

Author:

Miller Kathryn M.1ORCID,Perles Stephanie J.2,Schmit John Paul3,Matthews Elizabeth R.3,Weed Aaron S.4,Comiskey James A.5,Marshall Matthew R.2,Nelson Peter6,Fisichelli Nicholas A.6

Affiliation:

1. National Park Service, Northeast Temperate Network and Mid‐Atlantic Network P.O. Box 177 Bar Harbor Maine 04609 USA

2. National Park Service, Eastern Rivers and Mountains Network 420 Forest Resources Building University Park Pennsylvania 16802 USA

3. National Park Service, National Capital Region Network 4598 MacArthur Boulevard NW Washington DC 20007 USA

4. National Park Service, Northeast Temperate Network 54 Elm Street Woodstock Vermont 05091 USA

5. National Park Service, Region 1 Inventory and Monitoring Division 120 Chatham Lane Fredericksburg Virginia 22405 USA

6. Schoodic Institute at Acadia National Park P.O. Box 277 Winter Harbor Maine 04693 USA

Abstract

AbstractAdvanced regeneration, in the form of tree seedlings and saplings, is critical for ensuring the long‐term viability and resilience of forest ecosystems in the eastern United States. Lack of regeneration and/or compositional mismatch between regeneration and canopy layers, called regeneration debt, can lead to shifts in forest composition, structure, and, in extreme cases, forest loss. In this study, we examined status and trends in regeneration across 39 national parks from Virginia to Maine, spanning 12 years to apply the regeneration debt concept. We further refined the concept by adding new metrics and classifying results into easily interpreted categories adapted from the literature: imminent failure, probable failure, insecure, and secure. We then used model selection to determine the potential drivers most influencing patterns of regeneration debt. Status and trends indicated widespread regeneration debt in eastern national parks, with 27 of 39 parks classified as imminent or probable failure. Deer browse impact was consistently the strongest predictor of regeneration abundance. The most pervasive component of regeneration debt observed across parks was a sapling bottleneck, characterized by critically low sapling density of native canopy species and significant declines in native canopy sapling basal area or density for most parks. Regeneration mismatches also threaten forest resilience in many parks, where native canopy seedlings and saplings were outnumbered by native subcanopy species, particularly species that are less palatable deer browse. The devastating impact of emerald ash borer eliminating ash as a native canopy tree also drove regeneration mismatches in many parks that contain abundant ash regeneration, demonstrating the vulnerability of forests that lack diverse understories to invasive pests and pathogens. These findings underscore the critical importance of an integrated forest management approach that promotes an abundant and diverse regeneration layer. In most cases, this can only be achieved through long‐term (i.e., multidecadal) management of white‐tailed deer and invasive plants. Small‐scale disturbances that increase structural complexity may also promote regeneration where stress from deer and invasive plants is minimal. Without immediate and sustained management intervention, the forest loss we are already observing may become a widespread pattern in eastern national parks and the broader region.

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3