Vagus nerve stimulation‐induced stromal cell‐derived factor‐l alpha participates in angiogenesis and repair of infarcted hearts

Author:

Wang Yan12,Liu Yun1,Li Xing‐yuan1,Yao Lu‐yuan13,Mbadhi MagdaleenaNaemi1,Chen Shao‐Juan14,Lv Yan‐xia1,Bao Xin15,Chen Long5,Chen Shi‐You6,Zhang Jing‐xuan17,Wu Yan17,Lv Jing3,Shi Liu‐liu17,Tang Jun‐ming17

Affiliation:

1. Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research Hubei University of Medicine Shiyan PR China

2. Department of Pathology, Renmin Hospital Hubei University of Medicine Shiyan PR China

3. Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital Hubei University of Medicine Shiyan PR China

4. Department of Stomatology, Taihe Hospital Hubei University of Medicine Shiyan PR China

5. Experimental Medical Center, Guoyao‐Dong Feng Hospital Hubei University of Medicine Shiyan PR China

6. Department of Surgery University of Missouri Columbia Missouri USA

7. Institute of Basic Medical Sciences, Institute of Biomedicine Hubei University of Medicine Shiyan PR China

Abstract

AbstractAimsWe aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts.Methods and resultsSeven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7‐nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad‐shSDF‐1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF‐α), interleukin 1β (IL‐1β) and interleukin 6 (IL‐6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF‐α, IL‐1β and IL‐6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31‐positive vessel density and stromal cell‐derived factor‐l alpha (SDF‐1α) expression in the MI heart in vivo and the expression and distribution of SDF‐1α, C‐X‐C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF‐1α, V‐akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end‐diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF‐α, IL‐1β and IL‐6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF‐1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31‐positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF‐1α by shRNA. ACh promoted SDF‐1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF‐1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad‐shSDF‐1α.ConclusionsVNS promoted angiogenesis to repair the infarcted heart by inducing SDF‐1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR‐AKT‐Sp1 signalling pathway.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3