A Robust In Vitro Anti‐tuberculosis, Antimicrobial, and Anti‐inflammatory Activities Based on Azomethine Chelates Incorporating Co(II), Ni (II), Cu(II), and Zn(II) Ions: Synthesis, Characterization, and Investigation of the Aspects of Docking Interaction

Author:

Rani Manju1ORCID,Devi Jai1ORCID,Kumar Jai2ORCID,Sharma Dhananjay3ORCID

Affiliation:

1. Department of Chemistry Guru Jambheshwar University of Science and Technology Hisar Haryana India

2. Department of Chemistry Kurukshetra University Kurukshetra Haryana India

3. Department of Physics Guru Jambheshwar University of Science and Technology Hisar Haryana India

Abstract

ABSTRACTIn recent times, there has been a growing exploration of transition metal complexes as potential solutions for significant health challenges, including tuberculosis, microbes infection, and inflammation. Therefore, in our ongoing effort to identify biologically effective agents, Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of H2L1–H2L2 hydrazone ligands were synthesized. The structural features of synthesized compounds were recognized by employing several techniques such as FT‐IR, 1H NMR, 13C NMR, powder x‐ray diffraction (XRD), UV‐Vis, ESR, TG‐DTA, mass spectrometry, and molar conductance measurements. The bonding of ligands via Ophenolic, Oenolic, and Nazomethine donor atoms and the attachment of the three water molecules with metal ion to form the octahedral structure of complexes were corroborated by different spectroscopic techniques. The anti‐tuberculosis, antimicrobial, and anti‐inflammatory activities of the synthesized compounds were assessed using the microplate alamar blue assay, serial dilution, and bovine serum albumin (BSA) methods, respectively, and highlighted the more potency of the complexes than ligands. The synthesized Cu(II) (9) and Zn(II) (10) metal complexes exhibited excellent ability to inhibit the growth of H37Rv strain of Mycobacterium tuberculosis in comparison to standard drug streptomycin. The Cu(II) (6 and 9) and Zn(II) (10) complexes showed superb ability as antimicrobial agents, whereas Cu(II) (5) and Zn(II) (6) complexes exhibited significant anti‐inflammatory ability. The in vitro findings on the antituberculosis activity were reinforced by a significant molecular docking study, which has become a crucial component of computational research utilizing the enzyme Mtb Pks13 thioesterase domain of M. tuberculosis. Additionally, in this research work, the absorption–distribution–metabolism–excretion–toxicity (ADMET) study sparked the compounds' drug‐like behavior.

Publisher

Wiley

Reference77 articles.

1. Natural and Trained Innate Immunity Against Mycobacterium tuberculosis;Ferluga J.;Immunobiology,2020

2. HIV Infection and Multidrug Resistant Tuberculosis: A Systematic Review and Meta‐Analysis;Sultana Z. Z.;BMC Infectious Diseases,2021

3. Microbiome‐Immune Interactions in Tuberculosis;Mori G.;PLoS Pathogens,2021

4. Strategies to Combat Multi‐drug Resistance in Tuberculosis;Singh V.;Accounts of Chemical Research,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3