Affiliation:
1. Atmospheric Chemistry Research Group School of Chemistry Cantock's Close University of Bristol Bristol UK
2. Department of Aerospace Engineering Queen's Building University Walk University of Bristol Bristol UK
3. Rdscientific Berkshire UK
4. Turkish Accelerator & Radiation Laboratory Ankara University Golbasi, Ankara Turkey
Abstract
AbstractApplication of formation flights to civil aviation is gaining interest, primarily due to the fuel burn reduction achieved by flying through another aircraft's wake. However, it is emerging that there are additional, less‐recognized climate benefits via reduction in ozone and contrail warming through this concept. The NOx threshold level is defined as when the loss rate for OH by reaction with NO2 is equal to the loss rates for OH with CO and CH4, beyond which level, ozone formation will decrease. In this study, The NOx threshold level was calculated at different altitudes and found that at cruise altitude (∼10 km), the amount of NO2 required for parity in OH loss with loss due to reaction with CO and CH4 is around 2 ppb. The spatial and temporal NOx threshold levels were estimated by STOCHEM‐Common Representative Intermediate (CRI) global chemical transport model and In‐service Aircraft for Global Observing System (IAGOS) measurement data and found that northern midlatitudes of the atmosphere are the most favorable region existing with the smallest NOx thresholds (0.5 ppb) needed before reduction in ozone formation is likely to occur at cruise altitude of aircraft. Incorporating the major air traffic corridors into the coarse spatial resolution of the chemical transport model overestimated the NOx compensation point, that is, increased photochemical ozone production. Thus, a simple one‐dimensional (1D) aircraft plume dispersion model was developed with higher spatial and temporal resolution for considering aircraft plumes and its chemistry more accurately. The model run shows that the impact of formation flying aircraft emissions on spatially averaged ozone could be halved if the aircraft could maintain separations inside 4 km relative to well separated flights of 10 km or more.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献