Bifurcation and global stability of a discrete prey–predator model with saturated prey refuge

Author:

Mondal Chirodeep1,Kesh Dipak1ORCID,Mukherjee Debasis2

Affiliation:

1. Centre for Mathematical Biology and Ecology, Department of Mathematics Jadavpur University Kolkata India

2. Department of Mathematics Vivekananda College, Thakurpukur Kolkata India

Abstract

This article aims to describe the qualitative behavior of a discrete‐time prey–predator model including prey refuge. It is assumed that the fraction of prey in refuge is a monotonically increasing but self‐limiting function of prey population. The fixed points of the system and their local stability are investigated. The criteria for Neimark–Sacker bifurcation and period‐doubling bifurcation are presented. The sufficient conditions for global asymptotic stability of the interior fixed point are derived. The chaotic behavior of the system is stabilized by applying a hybrid control strategy. We conclude with a numerical simulation that strengthens our theoretical discussion and provides a way to observe the complex behavior of the system.

Publisher

Wiley

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3