Affiliation:
1. Division of Plastic and Reconstructive Surgery, Department of Surgery Washington University School of Medicine St. Louis Missouri USA
Abstract
AbstractIntroduction/AimsPromoting regeneration after segmental nerve injury repair is a challenge, but improving angiogenesis could be beneficial. Macrophages facilitate regeneration after injury by promoting angiogenesis. Our aim in this study was to evaluate the feasibility and effects of transplanting exogenous macrophages to a segmental nerve injury.MethodsBone marrow–derived cells were harvested from donor mice and differentiated to macrophages (BMDM), then suspended within fibrin hydrogels to facilitate BMDM transplantation. BMDM survival was characterized in vitro. The effect of this BMDM fibrin hydrogel construct at a nerve injury site was assessed using a mouse sciatic nerve gap injury. Mice were equally distributed to “fibrin+Mφ” (fibrin hydrogels containing culture medium and BMDM) or “fibrin” hydrogel control (fibrin hydrogels containing culture medium alone) groups. Flow cytometry (n = 3/group/endpoint) and immunohistochemical analysis (n = 5/group/endpoint) of the nerve gap region were performed at days 3, 5, and 7 after repair.ResultsIncorporating macrophage colony‐stimulating factor (M‐CSF) improved BMDM survival and expansion. Transplanted BMDM survived for at least 7 days in a nerve gap (~40% retained at day 3 and ~15% retained at day 7). From transplantation, macrophage quantities within the nerve gap were elevated when comparing fibrin+Mφ with fibrin control (~25% vs. 3% at day 3 and ~14% vs. 6% at day 7). Endothelial cells increased by about fivefold within the nerve gap, and axonal extension into the nerve gap increased almost twofold for fibrin+Mφ compared with fibrin control.DiscussionBMDM suspended within fibrin hydrogels at a nerve gap do not impair regeneration.
Funder
National Institutes of Health
Subject
Physiology (medical),Cellular and Molecular Neuroscience,Neurology (clinical),Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献