Surface Engineering of N‐Doped Carbon Derived from Polyaniline for Primary Zinc‐Air Batteries

Author:

Chávez‐Hernández Ángel1,Ramos‐Castillo Carlos M.1ORCID,Olivas Amelia2ORCID,Delgado Anabel D.3ORCID,Guerra‐Balcázar Minerva4ORCID,Álvarez‐Contreras Lorena3ORCID,Arjona Noé1ORCID

Affiliation:

1. Centro de Investigación y Desarrollo Tecnológico en Electroquímica Parque Tecnológico Querétaro S/N, SanFandila Pedro Escobedo Querétaro, C.P. 76703 México

2. Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México Km. 107 Carretera Tijuana-Ensenada CP 22800 Ensenada Baja California México

3. Centro de Investigación en Materiales Avanzados Complejo Industrial Chihuahua Chihuahua, C. P. 31136 México

4. Facultad de Ingeniería División de Investigación y Posgrado Universidad Autónoma de Querétaro Querétaro, C. P. 76010 México

Abstract

AbstractZinc‐air batteries (ZABs) with metal‐free cathodes are considered environmentally friendly and cost‐effective. However, more active and durable catalysts are required for this purpose. Herein, polyaniline (PANI)‐derived carbon materials were obtained to boost the oxygen reduction reaction (ORR) and, consequently, the performance of a primary ZAB. The developed porous N‐doped carbon (NDC) materials were engineered by varying the polymerization time and calcination temperature (500–900 °C). SEM micrographs and BET surface areas showed that the polymerization of aniline under cold conditions (5 °C) at 6, 8, or 24 h did not have a significant effect on the morphology or surface area. The fibrous structure of PANI was engineered by temperature, resulting in a progressive increase in the surface area until a three‐dimensional porous structure was achieved at 900 °C with the highest area of 601.9 m2 g−1. The surface doping of nitrogen species shifted from PANI‐rich N species to enriched graphitic N from 12.69 % (500 °C) to 24.26 % at 900 °C. The NDC 900 °C presented a voltage of 1.4 V and power density of 56 mW cm−2 (only 7 mW cm−2 lower than that of Pt/C). The results demonstrate that this material is an excellent candidate for high‐performance primary ZABs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3