A Practical Nanoplasmonic SERS Substrate for Differential Diagnosis of Lung Normal and Cancer Cells through Multivariate Statistical Analysis

Author:

Abraham Bini12ORCID,Emmanuel Neethu1ORCID,Ajikumar Nandu1ORCID,Pulassery Sanoop13ORCID,Varghese Liya Elsa1ORCID,Murali Vishnu Priya1,Munnilath Arun1,Maiti Kasutabh Kumar1,Yoosaf Karuvath124ORCID

Affiliation:

1. Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695019 Kerala India

2. Inter University Centre for Nanomaterials and Devices (IUCND) Cochin University of Science and Technology Kochi Kerala 682022 India

3. Current address: Madanapalle Institute of Technology & Science (MITS) Madanapalle, Chittoor Andhra Pradesh 517325 India

4. Department of Applied Chemistry Cochin University of Science and Technology Kochi Kerala 682022 India

Abstract

AbstractLung cancer ranks first for cancer‐related mortalities primarily due to late diagnosis. Though Surface‐Enhanced Raman spectroscopy (SERS) is a popular bioanalytical technique, its direct application to diagnosis is impeded by low data reproducibility. Colloidal nanoparticles suffer from SERS intensity fluctuations due to unavoidable aggregation, and Brownian and diffusion motions in biological samples. The processes for solid‐state SERS substrates are either sophisticated or difficult to reproduce. Herein, we revisit the well‐established thermal evaporation process for the easy and reproducible preparation of silver nanoparticles loaded SERS glass substrates. The static mode of thermal evaporation yielded closely packed and uniformly distributed silver nanoparticles. The properties of these nanoparticles are tuned for the best performance by controlling the thermal evaporation process. And SERS substrate exhibited a reasonably good enhancement factor of ~105 with uniformity and reproducibility <6 % RSD over a large area. It was utilized for label‐free SERS fingerprinting of lung adenocarcinoma cells A549 and normal lung fibroblast cells, WI‐38. The obtained data shows a slight distinction of Raman fingerprints in terms of certain biomolecules like nucleic acids, proteins, and lipids. Further multivariate statistical tools have been utilized which ensures a clear divergence between the cancerous cells and normal cells.

Publisher

Wiley

Subject

Materials Chemistry,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3