Pushing the Boundaries of Covalent Organic Frameworks through Postsynthetic Linker Exchange

Author:

Shreeraj G.1ORCID,Giri Arkaprabha1ORCID,Patra Abhijit1ORCID

Affiliation:

1. Department of Chemistry Indian Institution of Science Education and Research Bhopal Bhopal bypass road Bhopal Madhya Pradesh 462066 India

Abstract

AbstractCovalent organic frameworks (COFs) are a fast‐developing family of porous organic materials that have received substantial research interest during the last two decades. Dynamic covalent chemistry (DCC) is the cornerstone of COF fabrication. DCC is a process that entails reversible bond breaking‐reforming under equilibrium to attain the thermodynamically most stable structure. Due to the reversible nature of the covalent linkages, the building blocks of pre‐synthesized COF or pre‐assembled chemical entities, like network polymers and supramolecular hosts, can be replaced postsynthetically under appropriate reaction conditions. The technique is known as postsynthetic linker exchange (PLE). PLE provides an easy way to introduce functional building blocks into the COF backbone and control its chemical and physical properties. In this article, we have highlighted the recent advancements (from 2017 to 2023) in the postsynthetic linker exchange strategy for constructing highly crystalline and porous COFs that are often unattainable via de novo fabrication. The mechanistic insights of the linker exchange process for transforming various parent entities, such as COFs, amorphous covalent organic networks, linear polymers, and molecular cages to daughter COFs, have been deliberated with fascinating examples. We have also outlined some future avenues for applying the PLE process for the large‐scale fabrication of highly crystalline COFs for real‐time applications.

Publisher

Wiley

Subject

Materials Chemistry,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3