Stability and Surface Functionalization of Plasmonic Group 4 Transition Metal Nitrides

Author:

Shea Dreenan1,Karaballi Reem A.1,Jee Samantha1,Dasog Mita1ORCID

Affiliation:

1. Department of Chemistry Dalhousie University 6274 Coburg Road Halifax NS B3H 4R2 Canada.

Abstract

AbstractPlasmonic transition metal nitrides (TMNs) have emerged as a low‐cost and thermally and chemically robust alternatives to noble metals. While their superior thermal properties have been established, their chemical properties on the nanoscale haven't been as well investigated. Herein, the oxidative stability over time under ambient conditions and colloidal stability as function of pH was explored for plasmonic TiN, ZrN, and HfN nanoparticles. It was discovered that the TMN nanoparticles made via solid‐state method had a narrow pH stability range between 2–3. Under highly acidic conditions, the particles underwent dissolution and at pH ≥4, they aggregate and precipitate from the solution. Additionally, TiN nanoparticles had poor oxidative stability and oxidized to TiO2 after ~40 days. 3‐Aminopropyltriethoxysilane (APTES) and dimethylsilane coated TMNs were synthesized to yield water and organic solvent dispersible particles, respectively. These functionalized colloidal suspensions showed enhanced oxidative stability over 60 days and the APTES coating widened the pH stability window of TMNs to include physiological pH. This study shows that surface functionalization using M−O−Si linkages (where M=Ti, Zr, or Hf) can greatly enhance the stability, dispersibility and therefore applicability of plasmonic TMN nanoparticles.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Research Nova Scotia

Killam Trusts

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3