Sustainable Tailoring of Lignin Nanoparticles Assisted by Green Solvents

Author:

Almeida Fábio1,Margarida Ana1,Seixas Nalin1,Pinto Ricardo J. B.1,Silvestre Armando J. D.1,Da Costa Lopes André M.12

Affiliation:

1. CICECO Department of Chemistry University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal

2. CECOLAB – Collaborative Laboratory Towards Circular Economy R. Nossa Senhora da Conceição 3405-155 Oliveira do Hospital Portugal

Abstract

AbstractThis work aimed at studying the self‐assembly of lignin macromolecules towards lignin nanoparticles (LNPs) with green solvents and shedding light on a tailor‐made production of LNPs through a meticulous study of different variables. The methodology (antisolvent to lignin solution – method A; or lignin solution to antisolvent – method B), the lignin solvent, the flow rate of solvent/antisolvent addition, the lignin solution loading and the washing step (centrifugation vs dialysis) were examined. Remarkably, method B enabled achieving desired LNPs (127.4–264.9 nm), while method A induced the formation of lignin microparticles (582.8–7820 nm). Among lignin solvents, ethanol allowed the preparation of LNPs with the lowest hydrodynamic diameter (method B=127.4 nm), while the largest particles (method A=7820 nm) were obtained with ethylene glycol. These latest particles were characterized as heterogeneous, irregular, and highly aggregated when compared for instance with γ‐valerolactone counterparts, which showed the most homogeneous (PDI=0.057–0.077) and spherical particles. Moreover, decreasing lignin solution loading enabled the reduction on LNP size and Zeta potential. Dialysed samples allowed the formation of LNPs with lower hydrodynamic size, reduced aggregation, and higher homogeneity. Furthermore, dialysis provided high stability to LNPs, avoiding particle coalescent phenomenon.

Publisher

Wiley

Subject

Materials Chemistry,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3