Azide Thermolysis Frameworks: Self‐inflating, Porous, and Lightweight Materials

Author:

Brückel Julian12,Matt Yannick1ORCID,Schmidt Lisa2,Mattern Cornelia M.1,Schepers Ute3ORCID,Leopold Sonja3,Calkovsky Martin4,Gerthsen Dagmar4,Bräse Stefan125ORCID

Affiliation:

1. Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe German

2. 3DMM2O-Cluster of Excellence (EXC-2082/1-390761711) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany

3. Institute of Functional Interfaces KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

4. Laboratory for Electron Microscopy Karlsruhe Institute of Technology (KIT) Engesserstr. 7 76131 Karlsruhe Germany

5. Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

Abstract

AbstractPorous organic materials have received increasing attention due to their potential applications, such as gas storage, gas separation, and catalysis. In this work, we present a series of aromatic, polyazide‐containing building blocks that enable the formation of a new class of amorphous porous organic materials. The azide precursors are obtained in moderate to good yields following an easy synthesis procedure. By thermal decomposition, self‐inflating porous structures named Azide Thermolysis Frameworks (ATFs) can be obtained. Modified thermogravimetric analysis is used to determine the onset temperature at which the azides decompose and the frameworks are formed. The frameworks are further investigated via infrared (IR) spectroscopy, elemental analysis, scanning electron microscopy (SEM), and gas adsorption measurements. Specific surface areas and pore sizes are determined by nitrogen adsorption measurements at 77 K using the Brunauer–Emmett–Teller method (BET) to give surface areas of up to 677 m2/g for the ATF resulting from the thermolysis of TPB‐Azide at 450 °C, which can compete with early Covalent Organic Frameworks (COFs). The specific surface area can be tuned by varying the thermolysis temperature.

Publisher

Wiley

Subject

Materials Chemistry,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3