First‐Principles Study of Carbon‐Substituted ZnO Monolayer for Adjusting Lithium Adsorption in Battery Application

Author:

Jonuarti Riri1ORCID,Zulaehah Siti2,Suwardy Joko3,Marlina Resti4,Suprijadi 5,Kurniawan Robi6,Darma Yudi5

Affiliation:

1. Department of Physics Universitas Negeri Padang Jalan Prof. Dr. Hamka Air Tawar Barat Padang 25171 Indonesia

2. Department of Mechanical Engineering Universitas Muhammadiyah Purwokerto, Jl. K. H. Ahmad Dahlan Kembaran Banyumas 53182 Indonesia

3. Research Center for Quantum Physics National Research and Innovation Agency South Tanggerang 15314 Indonesia

4. Research Center for Biomass and Bioproducts National Research and Innovation Agency Cibinong 16911 Indonesia

5. Department of Physics Institut Teknologi Bandung Jalan Ganesa No. 10 Bandung 40132 Indonesia

6. Department of Physics Universitas Negeri Malang, Jalan Semarang No.5, Semarang 65145 Indonesia

Abstract

AbstractStructural stability, local density of states, bonding information, and charge distribution differences of C‐substituted ZnO (C/VZnxOy) monolayer structures, as well as their interactions with lithium atoms, are investigated using the density functional theory (DFT) method. The energy required to generate vacancies in pristine ZnO monolayers is considerably high, but since the C atoms are strongly adsorbed in the vacant sites, the energy required to form C/VZnxOy structures is reduced. These lattice substitutions cause an alteration of the Zn d‐states. The bonding analysis shows that the C−O interaction is stronger than the C−Zn interaction. So, it generates high stability for these structures. Furthermore, because the development of C/VZnxOy is aimed at lithium battery electrode applications, the most fundamental thing that needs to be examined initially is the interaction between the C/VZnxOy surfaces and the lithium atoms. Li3 strongly binds on all C/VZnxOy surfaces, and it turns to Li3+ based on a simple analysis of charge distribution differences. These findings will have a substantial impact on the future development of ZnO monolayers, and their potential as lithium battery electrodes can be studied further.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3