A GARCH model selection and estimation method based on neural network with the loss function of mean square error and model confidence set

Author:

Huang Yanhao1,Ren Ruibin1

Affiliation:

1. School of Mathematics Southwest Jiaotong University Chengdu Sichuan China

Abstract

AbstractThis paper proposes a method that uses mean square error (MSE) and model confidence set (MCS) as the loss function of back‐propagation neural network (BPNN), aiming to train and find a generalized autoregressive conditional heteroskedastic (GARCH) model that has the best forecasting performance of a time series. Combining MSE and the p‐value of MCS can not only estimate better parameters for the GARCH models but also find the best GARCH model to forecast the volatility of a time series. Meanwhile, we divide a time series into several parts and use each part as the input of the BPNN. Through the BPNN, each part of the time series will be turned into several forecasting values. These values will be used to calculate the MSE and the p‐value of MCS, which will then be used to update the parameters of the BPNN. In the end, we use MCS to choose the best GARCH model among the trained GARCH models and compare this method with maximum likelihood estimation (MLE) and the generalized least squares estimation (GLS). The result shows that the p‐value of MCS of the best model estimated by this method is higher than the p‐value of MCS of the best model estimated by MLE and GLS. According to the theory of MCS, a model that has a larger p‐value does have a better forecasting performance. The method proposed by this paper can provide a potential application of neural network in GARCH model forecasting and estimation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3