Estimation of forest above‐ground biomass in Guangxi, China, by integrating forest age and stack learning

Author:

Ju Ting123ORCID,Liu Bo14,Yue Yuemin23,Du Hu23,Li Qian23,Wang Xu14,Wang Kelin23ORCID

Affiliation:

1. School of Remote Sensing and Geomatics Engineering Nanjing University of Information Science and Technology Nanjing PR China

2. Guangxi Key Laboratory of Karst Ecological Processes and Services Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha PR China

3. Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences Beijing PR China

4. Technology Innovation Center of Integration Applications in Remote Sensing and Navigation, Ministry of Natural Resources Beijing PR China

Abstract

AbstractWith the implementation of large‐scale ecological restoration projects, Southwest China has become one of the fastest forest growth areas in the world in terms of vegetation cover and above‐ground biomass (AGB). It is expected to be a potential area for achieving the carbon neutrality target in China. Accurate estimation of forest AGB is becoming an increasingly urgent necessity for carbon neutrality and forest management. However, due to the complex geological background, there is significant uncertainty in estimating forest AGB in the southwestern region, which generally results in underestimating carbon sinks from forest restoration. To address the issue, we propose a method by incorporating forest age information and stack learning technique to estimate forest AGB. Based on remote sensing, forest inventory and in situ forest biomass data, three fundamental methods (Multiple regression, Random forest and Support vector machine) are employed and compared to build the AGB estimation model with vegetation indices, texture feature factors and forest age. Optimal basic models are further enhanced by integration learning to improve the estimation performance and then applied to the study area Guangxi to obtain regional AGB information of different forest types. The results show that: (1) forest age plays a vital role in reducing the uncertainty of AGB estimation. By incorporating forest age information, R2 of AGB estimation is improved by 0.07–0.27 and RMSE is decreased by 16.35%–47.47% for different forest types; (2) with R2 value >0.78, random forest model outperforms support vector machine and multiple linear regression models. Compared with the single optimal model, integration model by stack learning further enhances R2 of estimation by 0.02–0.03 and decreases RMSE by 5.20%–14.89%. (3) The total forest AGB in Guangxi is 988.17 Tg and the average forest AGB level is 73.30 t/ha. Natural broadleaf forest has the highest AGB level (86.75 t/ha), followed by natural coniferous forest (81.19 t/ha), planted coniferous forest (63.23 t/ha) and planted eucalyptus forest (49.71 t/ha). AGB level in karst areas is lower than that in non‐karst areas due to soil and water constraints. The majority of plantation forests in Guangxi is in the early and middle stages of forest succession, with the rapid growth of forest AGB, and has hence significant potential as carbon sinks. This study indicates that stack learning and incorporation of forest age could significantly decrease the uncertainty of forest AGB estimation. Our study helps to provide more accurate AGB information for karst ecological project management and regional carbon neutrality assessment.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3