Improved multimodal prediction of progression from MCI to Alzheimer's disease combining genetics with quantitative brain MRI and cognitive measures

Author:

Reas Emilie T.1ORCID,Shadrin Alexey2,Frei Oleksandr23,Motazedi Ehsan2,McEvoy Linda4,Bahrami Shahram2,van der Meer Dennis2,Makowski Carolina4,Loughnan Robert5,Wang Xin1,Broce Iris1,Banks Sarah J.1,Fominykh Vera2,Cheng Weiqiu2,Holland Dominic1,Smeland Olav B.2,Seibert Tyler4,Selbæk Geir6,Brewer James B.1,Fan Chun C.478,Andreassen Ole A.2,Dale Anders M.1479,

Affiliation:

1. Department of Neurosciences University of California, San Diego La Jolla California USA

2. NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction Oslo University Hospital Oslo Norway

3. Center for Bioinformatics Department of Informatics University of Oslo Blindern Oslo Norway

4. Department of Radiology University of California, San Diego La Jolla California USA

5. University of California, San Diego La Jolla California USA

6. University of Oslo, Universitetet i Oslo Oslo Norway

7. Population Neuroscience and Genetics Lab University of California, San Diego La Jolla California USA

8. Center for Human Development University of California, San Diego La Jolla California USA

9. Department of Psychiatry University of California, San Diego La Jolla California USA

Abstract

AbstractIntroductionThere is a pressing need for non‐invasive, cost‐effective tools for early detection of Alzheimer's disease (AD).MethodsUsing data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Cox proportional models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive impairment (MCI) to dementia. Power calculations estimated required clinical trial sample sizes after hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for AD pathology from the PHS.ResultsThe MHS predicted conversion from MCI to dementia (hazard ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and tau.DiscussionThe MHS may improve early detection of AD for use in memory clinics or for clinical trial enrichment.HIGHLIGHTS A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and memory. The MHS predicted time to conversion from mild cognitive impairment to dementia. MHS reduced hypothetical Alzheimer's disease (AD) clinical trial sample sizes by 67%. A polygenic hazard score predicted age of onset of AD neuropathology.

Funder

National Institute on Aging

Norges Forskningsråd

Nasjonalforeningen for Folkehelsen

National Institutes of Health

U.S. Department of Defense

Publisher

Wiley

Subject

Psychiatry and Mental health,Cellular and Molecular Neuroscience,Geriatrics and Gerontology,Neurology (clinical),Developmental Neuroscience,Health Policy,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3