Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed

Author:

Mitchell Megan I.1ORCID,Ben‐Dov Iddo Z.2,Ye Kenny3,Liu Christina1,Shi Miao3,Sadoughi Ali3,Shah Chirag3,Siddiqui Taha3,Okorozo Aham3,Gutierrez Martin4,Unawane Rashmi4,Biamonte Lisa4,Parikh Kaushal5,Spivack Simon3,Loudig Olivier1

Affiliation:

1. Center for Discovery and Innovation Hackensack Meridian Health Nutley New Jersey USA

2. Laboratory of Medical Transcriptomics, Internal Medicine B Hadassah‐Hebrew University Medical Center Jerusalem Israel

3. The Albert Einstein College of Medicine Montefiore Medical Center Bronx New Jersey USA

4. Department of Thoracic Oncology Hackensack University Medical Center, Hackensack Meridian Health Hackensack New Jersey USA

5. Department of Thoracic Oncology The Mayo Clinic Rochester Minnesota USA

Abstract

AbstractLung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh‐EVs). Using our customizable antibody‐purification assay, EV‐CATCHER, we initially determined that exh‐EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh‐EVs harbour lung‐specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh‐EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV‐CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti‐CCSP/SFTPC EV‐CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh‐EV subpopulations from EBC allows non‐invasive sampling of EVs produced by lung tissues.

Funder

National Heart, Lung, and Blood Institute

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3