Hydraulic redistribution supplies a major water subsidy and improves water status of understory species in a longleaf pine ecosystem

Author:

Belovitch Michael W.123,Brantley Steven T.2ORCID,Aubrey Doug P.13ORCID

Affiliation:

1. Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia USA

2. Ecohydrology Lab Jones Center at Ichauway Newton Georgia USA

3. Savannah River Ecology Laboratory University of Georgia Aiken South Carolina USA

Abstract

AbstractHydraulic redistribution (HR) is a common phenomenon in water‐limited ecosystems; however, it remains unclear how the volume of water transported via HR compares to other components of the hydrologic budget and how HR influences water availability for understory plant communities. In this study, we investigate the absolute and relative magnitude of HR on a forest water budget and identify potential impacts of this water subsidy to understory plant communities. We scaled tree‐level estimates of transpiration and HR of three common tree species naturally occurring in a longleaf pine woodland with plot‐level measurements of basal area to determine their magnitude at the stand scale. We trenched plots containing understory vegetation but devoid of mature trees and their connected roots to exclude HR subsidies to understory plant species. We analysed soil water isotopes and assessed leaf water potential (ΨL) in trenched and control plots to determine if HR results in mixing of water among soil strata and improves understory plant moisture status. Water inputs from HR were equivalent to >30% of total rainfall for the site during the observation period and ~40% of total tree water uptake, depending on species. A stable isotope mixing model confirmed that soil water within HR‐exposed plots was more similar to groundwater, whereas soil water within trenched plots was more similar to precipitation. Exclusion of HR via trenching decreased soil moisture and pre‐dawn ΨL for all understory species. These three lines of evidence suggest that HR from overstory trees redistributes a sizable portion of water from deeper to shallower soil profiles and that this water subsidy enhances understory plant water status.

Funder

Robert W. Woodruff Foundation

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3