Approximate analytical solution of a soil water movement equation under different ponding radii on the basis of numerical simulation

Author:

Luo Pengcheng1,Su Lijun12ORCID,Tao Wanghai1,Shan Yuyang3,Deng Mingjiang1,Wang Quanjiu1,Yan Haokui1

Affiliation:

1. State Key Laboratory of Eco‐hydraulics in Northwest Arid Region Xi'an University of Technology Xi'an China

2. School of Sciences Xi'an University of Technology Xi'an China

3. Institute of Water Resources and Hydro‐electric Engineering Xi'an University of Technology Xi'an China

Abstract

AbstractThis study addresses the problem of 2D soil water movement under ponding radii of 1, 2, and 3 cm. The soil water movement characteristics (shape parameters of the water content profile, ratio of horizontal wetting front to vertical wetting front, relationship between infiltration time and horizontal wetting front, and relationship between infiltration time and cumulative infiltration) under the above three kinds of water ponding radius were analyzed. On the basis of the assumption that the soil wetting body is a semi‐ellipse and the analytical solution of the 1D soil water movement equation at any angle, the approximate analytical solution of the 2D soil water movement equation under ponding conditions is optimized. The function relationships between infiltration time, wetting front, and cumulative infiltration are established. We applied the numerical data simulated by HYDRUS‐3D to validate the parameters in proposed analytical solutions and evaluated the relationships between the wetting front and hydraulic parameters. The results indicate that as the water ponding radius increases, the wetting body and 2D water content distribution becomes larger. When the water ponding radius was 2 cm, the numerical and analytical solution of 1D soil water distribution showed the best comparison results, and the model error was the smallest. The ratio of wetting fronts was linearly increased with the increase of air‐entry suction with R2 = 0.9969.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3