Soil‐vegetation interplay in a Holocene toposequence at Torres del Paine National Park, southern Andes, Chile

Author:

Senra Eduardo Osório1ORCID,Schaefer Carlos Ernesto Gonçalves Reynaud2,Soares de Oliveira Fábio3,Michel Roberto4,Bockheim James5,Feital Gjorup Davi2,Simas Felipe Nogueira Bello6,Francelino Márcio Rocha2

Affiliation:

1. Instituto de Ciências Agrárias Universidade Federal de Uberlândia Monte Carmelo Brazil

2. Departamento de Solos Universidade Federal de Viçosa Vicosa Brazil

3. Instituto de Geociências Universidade Federal de Minas Gerais Belo Horizonte Brazil

4. Departamento de Ciências Agrárias e Ambientais Universidade Estadual de Santa Cruz Ilheus Brazil

5. Department of Soil Science University of Wisconsin Madison Wisconsin USA

6. Departamento de Educação ‐ Universidade Federal de Viçosa Vicosa Brazil

Abstract

AbstractChile's Torres del Paine National Park (TPNP) is one of the most impressive landscapes in southern Patagonia, with unique natural elements on the edge of the southern ice field, where knowledge of soils and ecological relationships is nonexistent. Therefore, the objective of this study was to determine the chemical, physical, mineralogical, and micromorphological characteristics of Holocene soils along a local toposequence representing the main vegetation types of the TPNP. The morphological, chemical, physical, and mineralogical properties of 12 soil profiles were studied and classified according to Soil Taxonomy. Coevolution of vegetation and soil taxa is clearly evident since glaciation, with podsolization under austral Nothofagus pumilio forests leading to the development of spodosols, while paludization in local depressions with Nothofagus forests allowed the formation of histosols. Slopes covered with loess and tephra led to the formation of Andisols with shrub vegetation. Predominant parent materials include till from Late Quaternary advances of southern Andean ice, Pleistocene loess, and volcanic ash from surrounding Chilean volcanoes. The parent materials were strongly influenced by Late Quaternary climatic and landscape changes following the retreat of the Last Glacial Maximum in southern Patagonia, resulting in erosional and depositional conditions (windblown loess, fluvial glacial deposits, and moraines). Stable landforms show the influence of allochthonous volcanic ash shaping Andean features, combined with the accumulation of organic matter in hydromorphic soils. Three main groups of soils have been identified: loess‐rich soils, organic‐rich soils, and poorly developed soils. The latter show low fertility related to recent landforms on different substrates ranging from till, rocky slopes, talus, or glacial deposits. In high mountain regions under periglacial conditions, cryoturbation features indicate seasonal frost–thaw cycles without current permafrost. The diversity of soil orders in the mountains of southern Patagonia is comparable to similar environmental conditions and latitudes in the Northern Hemisphere. However, the andic properties due to volcanic ejecta inputs, as well as organic‐rich soils at low altitudes of bottom valleys, are typical features of the soils at TNTP.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Instituto Nacional de Ciência e Tecnologia da Criosfera

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3