Examination of the reliability of X‐ray powder diffraction analysis to determine mineral composition of soils

Author:

Kurokawa Kohei1ORCID,Azuma Kazuki1ORCID,Nakao Atsushi1ORCID,Suzuki Atsuhito1,Wakabayashi Shokichi2ORCID,Fujimura Shigeto3ORCID,Shinano Takuro4ORCID,Yanai Junta1ORCID

Affiliation:

1. Graduate School of Life and Environmental Sciences Kyoto Prefectural University Sakyo‐ku Japan

2. National Institute for Agro‐Environmental Sciences Tsukuba Japan

3. Tohoku Agricultural Research Center Arai Japan

4. Research Faculty of Agriculture Hokkaido University Sapporo Japan

Abstract

AbstractX‐ray powder diffraction (XRPD) is an effective technique for identifying and quantifying mineral types in soil. However, few studies have compared quantitative values based on XRPD with those from conventional wet chemical methods (WCMs). Here, we determined the primary mineral content in artificial mineral mixtures and 79 agricultural soils from across Japan using WCMs and two XRPD‐based quantitative methods: the mineral intensity factor (MIF) and the full‐pattern summation (FPS) methods performed with the powdR package for R. For artificial mixtures, the accuracy of mineral content determination (i.e., micas, quartz, K‐feldspar, and plagioclase) followed the order: WCMs > FPS > MIF. For Japanese agricultural soils, the contents of each mineral were highly similar between WCMs and FPS, based on mean absolute differences and correlation coefficients. Alternatively, MIF displayed lower similarities with WCMs, likely due to preferred orientation and peak shift or overlap issues. Using the FPS method, the mica and amorphous phase contents were positively and significantly correlated with nonexchangeable K content and cation exchange capacity, respectively. Additionally, the plagioclase content was negatively and significantly correlated with clay content. Thus, the powdR‐based FPS method is recommended for determining the mineral composition of soils, as it allows for a clearer and more quantitative demonstration of the relationship between individual minerals and soil properties.

Funder

New Energy and Industrial Technology Development Organization

Japan Society for the Promotion of Science

Agriculture, Forestry and Fisheries Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3