A study on the crystallization and melting of PLA nanocomposites with cellulose nanocrystals by DSC

Author:

Kang Homin1,Kim Dae Su1ORCID

Affiliation:

1. Department of Chemical Engineering Chungbuk National University Cheongju Chungbuk South Korea

Abstract

AbstractPoly(lactic acid) (PLA)/cellulose nanocrystal (CNC) nanocomposites with 1 or 3 phr of CNC were prepared by melt mixing and compression molding then their % crystallinities as well as crystallization and melting behavior during the first heating/cooling/second heating process were investigated by differential scanning calorimetry (DSC). Isothermal crystallization at 80–130°C for 5 min was performed during the cooling process to see how the isothermal crystallization affects % crystallinity at 25°C. The % crystallinity at 25°C as well as the crystallization rate of the nanocomposite increased with CNC content and showed a maximum at the isothermal crystallization temperature of 105°C regardless of CNC content. The bimodal DSC melting peaks observed during the second heating process were considered due to the crystals with many defects (α′) and the crystals with more perfect structure (α), respectively. Isothermal crystallization kinetic analysis by Avrami equation showed that the Avrami exponents of the nanocomposites were about 1, meaning a rod‐ or disc‐shaped crystal growth mechanism. Improving the mechanical properties of the PLA/CNC nanocomposite would be possible because the % crystallinity at 25°C could be effectively increased by changing CNC content and cooling history.Highlights PLA/CNC nanocomposites. Crystallization and melting behavior analysis of the nanocomposites by DSC. Isothermal crystallization at 80–130°C for 5 min during cooling by DSC. Crystallization degree was maximum for the isothermal crystallization at 105°C. Isothermal crystallization kinetic analysis by Avrami equation.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3