Modified algebraic reconstruction technique based on circular scanning geometry to improve processing time in photoacoustic tomography

Author:

Ahangar Darband Maryam1,Qorbani Omid1,Najafi Aghdam Esmaeil1ORCID

Affiliation:

1. Department of Electrical Engineering Sahand University of Technology Tabriz Iran

Abstract

AbstractPhotoacoustic imaging is low‐risk, and noninvasive tool for imaging biological tissues that acoustically respond to absorbed irradiating nonionized short laser pulse by tissue, then the image of light energy absorption distribution in the tissue has been reconstructed by image reconstruction algorithms. Indeed, photoacoustic tomography is a hybrid imaging modality that combines pure optical and acoustic imaging methods to take advantage of them, therefore, it contains high optical contrast with good ultrasonic resolution. However, improving its main parts is challenging. One of the most important parts of photoacoustic imaging is image reconstruction using appropriate algorithms. There are various image reconstruction methods. Image reconstruction based on an algebraic algorithm can reconstruct a clear image without artifact, but the algorithm is typically time‐consuming. This paper deals with this drawback of the algorithm. Simulations demonstrate significant improvement in the processing time of reconstructed images achieved by our proposed algorithm as compared to the phase‐controlled algorithm. Based on the image reconstruction algorithm in circular scanning geometry presented in this article, the processing time required to create a 2D tomographic image is reduced from 60 to 3.89 s compared to our previous work, which was based on a phase‐controlled algorithm. This improvement was based on inspiration from the experiences of our past works in dealing with various image reconstruction algorithms, which ultimately led to improvement in the calculation time.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3