Computational assessment of leg response to extreme loadings using a detailed finite element model

Author:

Vikram Aman1ORCID,Chawla Anoop1,Mukherjee Sudipto1

Affiliation:

1. Department of Mechanical Engineering Indian Institute of Technology Delhi Delhi India

Abstract

AbstractThis study focuses on evaluating the response of the Total Human Model for Safety™ lower extremity finite element model under blast loading. Biofidelity of the lower extremity model was evaluated against experiments with impact loading equivalent to underbody blast. The model response was found to match well with the experimental data for the average impactor speeds of 7 and 9.3 m/s resulting in an overall correlation and analysis rating of 0.86 and 0.82, respectively. The model response was then used to investigate response for antipersonnel mine explosion where the numerical setup consists of a charge mass of 40 g trinitrotoluene placed at a depth of 50 mm below the heel. The explosion was modeled using Multi Material‐Arbitrary Lagrangian Eulerian method. The model was subjected to the graded input in terms of variation in standoff distance and mass of explosive to investigate the sensitivity of the model. The model found sensitive to the threat definition and predicted an increase of 110% in peak fluid‐structure interaction force with 20% reduction in its time to peak and 29% increase in peak calcaneus axial force with a reduction of 33% in its time to peak when explosive mass varied from 40 g to 100 g. The location of the explosive below the foot was discovered to have significant effect on the injury pattern in near‐field explosion. A comparative study suggested that the model predicted similar response and damage pattern compared to experimental data.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3