Affiliation:
1. Biomolecular Interaction Centre University of Canterbury Christchurch New Zealand
2. School of Product Design University of Canterbury Christchurch New Zealand
3. Precison Chromatography Limited Christchurch New Zealand
4. Department of Chemical and Process Engineering University of Canterbury Christchurch New Zealand
Abstract
AbstractHere, we compare the performance of various three‐dimensional‐printed Monolith Adsorption (PMA) columns designed from a triply periodic minimal surface geometry, the Schoen gyroid. The structures examined had designed hydraulic diameters between 203 and 458 µm and voidages of 40%−60%. We compare column efficiency, porosity, static binding capacity and dynamic binding capacity for various load volumes and flow rates. The results show that all structures allowed efficient passage of yeast cells (>97%) over a wide range of interstitial velocities (191 to 1911 cm/h) while maintaining a low pressure drop (<0.1 MPa). The structure with a voidage of 40% and a hydraulic diameter of 203 µm showed the best performance in all aspects evaluated. Bovine serum albumin (BSA) recoveries for all structures (27%−91% when the loaded volume was 180 mL) were significantly affected by hydraulic diameter, mean channel wall thickness, velocity and voidage. Moreover, biomass addition resulted in a decrease in BSA recovery, which became more obvious at high velocities. However, this did not lead to a dramatic reduction in saturated binding capacity, significant changes in axial dispersion, or blockage of channels and could be compensated for by recirculation of the feed, even at high velocity. PMA thus potentially provides an appealing alternative to Expanded Bed Adsorption, retaining the latter's advantages, while eliminating fluidization issues and minimizing both processing time and buffer consumption.
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献