Affiliation:
1. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
2. China Institute of Water Resources and Hydropower Research Beijing China
3. Department of Architecture and Civil Engineering City University of Hong Kong Hong Kong China
Abstract
AbstractDebris floods commonly occur in steep channels with an abundant sediment supply, and they can cause significant damage, primarily due to their higher sediment concentrations and negative impacts upon bank erosion, deep scouring and aggradation. These key hazards pose challenges for traditional assessment methods, making quantification difficult. This became obvious during a recent catastrophic debris flood that occurred on July 12, 2022, in the Heishuigou catchment (102 km2), northern Sichuan Province, China. In this case study, we developed an integrated methodology for assessing this debris flood event by incorporating field surveys, hydrological and hydraulic modelling and sediment transport calculations. Detailed information such as topographic maps, photographs, deposits, grain size distributions and inundation depths was collected to analyse the material sources, validate the parameters and conduct model calculations. The peak debris flood discharge and the supra‐critical bed shear stress ratios, estimated from hydrological and dynamic models, were incorporated to analyse the debris flood's typology and characterize its destructive mechanisms. The regional frequency–volume relationship established through bedload transport calculations was calibrated using the volume of the deposits determined via field investigation. These methods not only contribute to a comprehensive understanding of debris floods but also provide valuable support for future risk assessments and mitigation designs.
Funder
China Institute of Water Resources and Hydropower Research
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献