An enhanced electron transport chain improved astaxanthin production in Phaffia rhodozyma

Author:

Luna‐Flores Carlos H.1ORCID,Wang Alexander2,Cui Zhenling13ORCID,von Hellens Juhani2,Speight Robert E.13ORCID

Affiliation:

1. School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Faculty of Science Queensland University of Technology (QUT) Brisbane Australia

2. Bioproton Pty Ltd Brisbane Queensland Australia

3. ARC Centre of Excellence in Synthetic Biology Queensland University of Technology (QUT) Brisbane Queensland Australia

Abstract

AbstractAstaxanthin (AX) is a carotenoid pigment with antioxidant properties widely used as a feed supplement. Wild‐type strains of Phaffia rhodozyma naturally produce low AX yields, but we increased AX yields 50‐fold in previous research using random mutagenesis of P. rhodozyma CBS6938 and fermentation optimization. On that study, genome changes were linked with phenotype, but relevant metabolic changes were not resolved. In this study, the wild‐type and the superior P. rhodozyma mutant strains were grown in chemically defined media and instrumented fermenters. Differential kinetic, metabolomics, and transcriptomics data were collected. Our results suggest that carotenoid production was mainly associated with cell growth and had a positive regulation of central carbon metabolism metabolites, amino acids, and fatty acids. In the stationary phase, amino acids associated with the TCA cycle increased, but most of the fatty acids and central carbon metabolism metabolites decreased. TCA cycle metabolites were in abundance and media supplementation of citrate, malate, α‐ketoglutarate, succinate, or fumarate increased AX production in the mutant strain. Transcriptomic data correlated with the metabolic and genomic data and found a positive regulation of genes associated with the electron transport chain suggesting this to be the main driver for improved AX production in the mutant strain.

Funder

Institute for Future Environments, Queensland University of Technology

Queensland Government

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3