Adaptive scatter kernel deconvolution modeling for cone‐beam CT scatter correction via deep reinforcement learning

Author:

Piao Zun1,Deng Wenxin1,Huang Shuang1,Lin Guoqin1,Qin Peishan1,Li Xu1,Wu Wangjiang1,Qi Mengke1,Zhou Linghong1,Li Bin2,Ma Jianhui3,Xu Yuan1

Affiliation:

1. School of Biomedical Engineering Southern Medical University Guangzhou China

2. State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou China

3. Department of Radiation Oncology Nanfang Hospital, Southern Medical University Guangzhou China

Abstract

AbstractBackgroundScattering photons can seriously contaminate cone‐beam CT (CBCT) image quality with severe artifacts and substantial degradation of CT value accuracy, which is a major concern limiting the widespread application of CBCT in the medical field. The scatter kernel deconvolution (SKD) method commonly used in clinic requires a Monte Carlo (MC) simulation to determine numerous quality‐related kernel parameters, and it cannot realize intelligent scatter kernel parameter optimization, causing limited accuracy of scatter estimation.PurposeAiming at improving the scatter estimation accuracy of the SKD algorithm, an intelligent scatter correction framework integrating the SKD with deep reinforcement learning (DRL) scheme is proposed.MethodsOur method firstly builds a scatter kernel model to iteratively convolve with raw projections, and then the deep Q‐network of the DRL scheme is introduced to intelligently interact with the scatter kernel to achieve a projection adaptive parameter optimization. The potential of the proposed framework is demonstrated on CBCT head and pelvis simulation data and experimental CBCT measurement data. Furthermore, we have implemented the U‐net based scatter estimation approach for comparison.ResultsThe simulation study demonstrates that the mean absolute percentage error (MAPE) of the proposed method is less than 9.72% and the peak signal‐to‐noise ratio (PSNR) is higher than 23.90 dB, while for the conventional SKD algorithm, the minimum MAPE is 17.92% and the maximum PSNR is 19.32 dB. In the measurement study, we adopt a hardware‐based beam stop array algorithm to obtain the scatter‐free projections as a comparison baseline, and our method can achieve superior performance with MAPE < 17.79% and PSNR > 16.34 dB.ConclusionsIn this paper, we propose an intelligent scatter correction framework that integrates the physical scatter kernel model with DRL algorithm, which has the potential to improve the accuracy of the clinical scatter correction method to obtain better CBCT imaging quality.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3