A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data

Author:

Ling Man Ho1,Bae Suk Joo2ORCID

Affiliation:

1. Department of Mathematics and Information Technology The Education University of Hong Kong, Tai Po Hong Kong SAR China

2. Department of Industrial Engineering Hanyang University Seoul South Korea

Abstract

AbstractAn accelerated degradation test (ADT) hastens degradation mechanisms of products by loading higher stresses than normal use conditions to shorten testing time. In some situations, degradation levels during ADT can be measured only by destructive inspection where testing units must be destroyed or physical characteristics are significantly changed after measuring the performance degradation. For such an accelerated destructive degradation test (ADDT), initial degradation levels may vary from item to item. In this regard, we propose a random‐effect gamma process model with random initial degradation for the reliability analysis of ADDT data. Under the proposed modeling framework, we derive the maximum likelihood estimates (MLEs) of the model parameters and construct an inferential procedure for the parameters and reliability measures of interest, using asymptotic properties of the MLEs. In particular, the mean and the variance of the mean‐time‐to‐failure of the products from the ADDT data are explicitly derived in closed forms. Monte Carlo simulations under various scenarios are performed to validate the performance of proposed maximum likelihood estimation and inferential methods for the ADDT data. Finally, reliability estimation at a normal use condition and inferential procedures are illustrated through an ADDT example of return‐springs in a bi‐functional DC motor system of an automobile.

Funder

Education University of Hong Kong

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

Subject

Management Science and Operations Research,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3