Research on Satellite Navigation Control of Six‐Crawler Machinery Based on Fuzzy PID Algorithm

Author:

Shuai Wang1,Huimin Wang2ORCID,Haoyan Zhang2,Yiwei Mao2,Jiaxin Fan2

Affiliation:

1. College of Biological and Agricultural Engineering Jilin University Changchun China

2. School of Mechanical and Aerospace Engineering Jilin University Changchun China

Abstract

ABSTRACTThe six‐crawler driving mechanism plays a crucial role in the operation of large machines such as bucket‐wheel excavators, dumping machines, and mobile crushing stations, as it serves functions like bearing, movement and steering. The driving characteristics of this mechanism directly influence the safety and efficiency of these machinery systems. To enhance the design methodology for multi‐crawler machinery, improve path controllability, and achieve adaptive driving, a satellite navigation control system for six‐crawler machinery was developed based on the principles of real‐time kinematic (RTK) satellite positioning. This system utilizes the distance deviation and heading angle deviation between the actual path and the predetermined path of the six‐crawler machinery as inputs to a fuzzy proportion integration differentiation (fuzzy PID) controller. This controller regulates the deviation angle of the steering crawler and the driving speeds of each track, thereby ensuring precise path tracking control. To evaluate the path tracking control performance under both straight and curved driving conditions, a virtual prototype model of the six‐crawler mechanical system was established, and co‐simulation analysis was conducted. In addition, an experimental platform for path tracking control of six‐crawler machinery was established to validate the efficacy of the satellite navigation system. The actual tracking data obtained from various driving conditions and initial deviations demonstrated that the RTK satellite navigation path tracking control system exhibited excellent control performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3