Nonlinear recursive gain asymptotic tracking controller design for hydraulic turbine regulating systems

Author:

Kanchanaharuthai Adirak1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering Rangsit University Pathum Thani Thailand

Abstract

AbstractThis paper focuses on the nonlinear asymptotic tracking control for a hydraulic turbine regulating system (HTRS). The proposed control approach combines a recursive gain control scheme with an adaptive technique to achieve asymptotic tracking. An important characteristic feature of the proposed controller is the incorporation of a smooth function with a time‐varying function that is integrable and positive. This function provides the developed controller with sufficient power to achieve asymptotic tracking, whereas the recursive gain control alone can ensure that tracking errors converge exponentially to zero within balls of any arbitrarily small radii. The simulation results demonstrate the efficacy of the presented control technique, which outperforms backstepping, command‐filtered backstepping, dynamic surface, synergetic control designs; deals with the “explosion of complexity” problem; and simultaneously achieves asymptotic tracking. Furthermore, even though the HTRS parameters vary, the proposed technique is capable of providing consistent control performance. As a result, the presented controller is unaffected by changes in the system's parameters.

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3