Affiliation:
1. Institute for Materials Science, Materials Synthesis Group University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
Abstract
If all‐solid‐state fluoride‐ion batteries want to compete with existing battery technologies, significant improvements in terms of cyclic stability are necessary to fully access the high specific capacities, which this battery concept can provide in theory. Herein, the development of a high‐pressure, high‐temperature battery operation stand for battery cycling under inert conditions inside a glovebox is reported. This stand is then used to investigate the effect of stack pressure on the cell performance of conversion‐based as well as intercalation‐based electrode materials for fluoride‐ion batteries. It is found that cyclic stability as well as energy efficiency is strongly increased compared to nonpressure conditions, which is assigned to sustained interparticle contact. Thus, the cell design must be considered carefully to be able to distinguish intrinsic material properties from percolation‐ and interphase‐related impacts on the cell behavior. Further, the effect of pressure on the ionic conductivity of common solid fluoride‐ion conductors is investigated.
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献