Magnetically Guided Theranostics: Novel Nanotubular Magnetic Resonance Imaging Contrast System Using Halloysite Nanotubes Embedded with Iron–Platinum Nanoparticles for Hepatocellular Carcinoma Treatment

Author:

Chan Ming‐Hsien1ORCID,Lee Chi‐Yu2,Li Chien‐Hsiu3ORCID,Chang Yu‐Chan1ORCID,Wei Da‐Hua2ORCID,Hsiao Michael456ORCID

Affiliation:

1. Department of Biomedical Imaging and Radiological Sciences National Yang Ming Chiao Tung University Taipei 11221 Taiwan

2. Graduate Institute of Manufacturing Technology and Department of Mechanical Engineering National Taipei University of Technology Taipei 10608 Taiwan

3. Department of Urology Shuang Ho Hospital Taipei Medical University New Taipei 23561 Taiwan

4. Genomics Research Center Academia Sinica Taipei 11529 Taiwan

5. Department and Graduate Institute of Veterinary Medicine School of Veterinary Medicine National Taiwan University Taipei 10617 Taiwan

6. The Ph.D. Program for Translational Medicine College of Medical Science and Technology Taipei Medical University Taipei 11031 Taiwan

Abstract

Halloysite nanotubes (HNTs) have a layered structure of clay silicate minerals and a tubular shape, which is suitable for the uniform loading of small substrates and drug molecules. The inner diameter of HNTs with an acidic solvent is selectively etched to increase the loading capacity of magnetic iron–platinum (FePt) nanoparticles. The FePt nanoparticles and etched HNTs (eHNT) are then composited by vacuum decompression. The resulting product is named FePt@eHNT and is used as a contrast agent for T2‐weighted magnetic resonance imaging. According to a comprehensive analysis of the material and its magnetic properties, by adding different proportions of HNTs before and after modification, the saturation magnetization can reach 23.769 emu g−1, which is higher than that of the composite materials studied in previous studies. This is because the tubular structure promotes the orderly displacement of the FePt nanoparticles under three‐dimensional space constraints and the uniform effect of the magnetic field. In addition, the magnetothermal effect of the composite material is observed and its potential as an imaging agent is investigated. In this study, the enhancement of its ferromagnetism and its potential to become a multifunctional composite material for applications in drug delivery, magnetic hyperthermia, and bioimaging is demonstrated.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3