Fluorinated Metal–Organic Framework–Polymer Mixed Matrix Membrane with Tunable Hydrophobic Channel for Efficient Pervaporation of Butanol/Water

Author:

Zhang Hao1,Xiao Feng1,Wu Yanhui1ORCID

Affiliation:

1. Shanghai Key Laboratory of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China

Abstract

The permeability–selectivity trade‐off of membrane is a major challenge limiting the development of pervaporation (PV) technology. Rational design of high‐performance mixed matrix membranes (MMMs) has the potential to break off the trade‐off. Herein, a solvent‐assisted linker exchange‐based strategy is reported to introduce fluoroalkyl into metal–organic framework‐808 (MOF‐808). The pore size of fluorinated MOF‐808 can be adjusted with fluoroalkyl of different chain length (like trifluoromethyl and pentafluoropropyl). Then, the fluorinated MOF‐808/polyether block amide (PEBA) MMMs are prepared for the PV of n‐butanol/water. Compared with pristine PEBA membrane, 20 wt% 3F‐MOF‐808(P)/PEBA MMMs (3F = ‐CF3 group; P = postmodification method) exhibit 69% increase in permeation flux and 33% increase in separation factor in the PV of 2.5 wt% n‐butanol aqueous solutions at 70 °C. Based on Grand Canonical Monte Carlo and molecular dynamics simulations, fluorinated MOF‐808 shows better butanol affinity (pull effect) and stronger water repulsion ability (push effect). And the “push–pull effect” between fluorinated MOF‐808 with butanol/water is helpful to enhance the PV performance of MMMs. The application of “push–pull effect” provides a new strategy for the rational design of high‐performance MMMs, which is of great significance for the in‐depth research and application of PV technology.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3