Magnesium Ions Storage in Molybdenum Oxide Structures Examined as a Promising Cathode Material for Rechargeable Magnesium Batteries

Author:

Setiawan Dedy1,Lee Hyungjin1,Bu Hyeri1,Aurbach Doron2,Hong Seung-Tae13,Chae Munseok S.4ORCID

Affiliation:

1. Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea

2. Department of Chemistry Bar-Ilan University Ramat-Gan 5290002 Israel

3. Energy Science and Engineering Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea

4. Department of Nanotechnology Engineering Pukyong National University Busan 48513 Republic of Korea

Abstract

Magnesium batteries have attracted considerable attention as a promising technology for future energy storage because of their capability to undergo multiple charging reactions. However, most oxide materials utilized as hosts for magnesium batteries do not perform well at room temperature or in nonaqueous electrolytes. Herein, a host material, Na0.04MoO3·(H2O)0.49 is successfully developed through the chemical reduction of alpha‐MoO3, which enables magnesium storage reaction in a 0.5 m Mg(ClO4)2/acetonitrile electrolyte at 25 °C. Electrochemical analysis reveals that the cathode material possesses a discharge capacity of 157.4 mAh g−1 at a 0.2 C rate. The Na0.04MoO3·(H2O)0.49 cathode material also exhibits a capacity retention of 93.4% after 100 cycles compared to the first cycle at a 2 C rate, with an average discharge voltage of −0.474 V versus activated carbon (≈2.16 V estimated discharge voltage vs Mg/Mg2+). The study findings demonstrate, for the first time, the potential of this material as a cathode for magnesium batteries at ambient temperatures and in nonaqueous electrolytes.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3