Stable Strain State of Single‐Twinned AgPdF Nanoalloys under Formate Oxidation Reaction

Author:

Tang Quan1,Guo Longfei1,Jin Tao1,Shan Shuang1,Wang Qiao1,Wang Junpeng1,Pan Bowei1,Li Zhen1,Chai Yuanhao1,Chen Fuyi1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 China

Abstract

Surface reconstruction as common phenomenon during catalysis complicates the prediction and modeling on catalytic activity of the nanoalloy, hence developing a stable structure to be resistant to surface restructuring would provide an ideal prototype for substantial and reliable mechanism analysis. Herein, the single‐twinned structure in inverse AgPdF catalyst is constructed to enhance the catalytic activity and stability for the formate oxidation reaction (FOR). The single‐twinned AgPdF nanoalloy (t‐AgPdF) catalyst exhibits an enhanced peak current density of 4.6 A mgPd−1, a reduced onset potential of 0.44 V, a higher activity retention of 55.7% after 600 cycles, and a longer activity retention time of 55.9 h. Additionally, the t‐AgPdF catalyst presents a higher hydrogen generation rate of 1.11 mL mgPd−1 than that of single‐crystalline AgPd nanoalloy (AgPd) catalyst, and density functional theory calculations reveal that t‐AgPdF(111) surface exhibits a reduced activation energy of 0.59 eV for formate decomposition reaction. Impressively, the t‐AgPdF maintains compressive and tensile strain state along the Σ3 twin boundaries before and after the FOR, in contrast to AgPd. This is the first time to reveal that the nanotwinned structures contribute inverse t‐AgPdF catalysts the catalytic active sites with stable strain state since starting reaction for the FOR.

Funder

National Natural Science Foundation of China

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3